December 16, 2013

Comparing Protein A Resins for Monoclonal Antibody Purification

A prototype Protein A resin is evaluated for purification performance, reusability, and cost performance.

With greater economic pressure on monoclonal antibody (mAb) production for therapeutic and research uses, antibody titers in mammalian cell culture have increased dramatically over the past 20 years. As a consequence, downstream processing must accept and handle higher titers of mAbs in harvested cell-culture fluid (HCCF), and vendors of mAb purification technologies must develop chromatography resins with high binding capacity to meet the demand. In addition, more cost-efficient cleaning procedures are necessary to extend the lifetime of chromatography resins and to reduce the cost for cleaning and validation. A team from Chugai Pharmaceutical (Japan) investigated the mAb purification performance of a new alkali-tolerant, prototype Protein A resin (Resin 3, MabSelect SuRe LX prototype, Cytiva), which has the potential to address the demand for a more advanced, cost-effective mAb purification technology.

The methodology for the production of monoclonal antibodies from a cell line by hybridization of mouse myeloma and mouse spleen cells from an immunized donor was first published in 1975 (1). As a technology that permits the generation of monoclonal antibodies against almost any target molecule, it immediately gained great interest as a source for potential drug candidates. Although it took some time for the first therapeutic mAb to become commercially available in 1986 (2), the market for therapeutic mAbs has since grown rapidly. MAbs have proved to be successful as targeted therapeutics for a variety of diseases, including several forms of cancer, multiple sclerosis, and immunological disorders such as rheumatoid arthritis and psoriasis. In 2007, mAbs accounted for almost half of the top-20 best-selling biotechnology drugs in the US alone, establishing them as an important group of molecules (3). Today, mAbs constitute the single largest class of biological drugs and accounts for about 36% of the total biologics market with an annual sales growth rate of approximately 10% (4).

Commercial-scale production challenges
The rapid growth in mAb demand has triggered industry efforts to increase manufacturing capacity, with the consequence that the antibody titers in mammalian cell culture have increased dramatically. Today, a typical process accumulates titers of 1-5 g/L, but expression levels as high as 10-13 g/L have been reported (5). The increase in upstream productivity creates a subsequent demand on downstream processing to address high-titer HCCF.

Commercial-scale purification of mAbs usually contains two or three chromatographic steps. Protein A is the affinity chromatography ligand of choice for the first antibody capture step, because its high selectivity gives excellent purity (typically > 99%) and high yields. Furthermore, Protein A-based resins form the basis of almost all mAb-purification platforms as they are easy to use at both small and large scale with generic experimental protocols.

Increased antibody titers create a potential purification challenge because of the limited capacity of current Protein A resins. To handle the high titers, new resins with significantly greater capacity are needed. In addition, Protein A resins with the ability to withstand repeated cleaning-in-place (CIP) with low-cost sodium hydroxide (NaOH) considerably improves process economics.


Tags: bioprocess development, Protein A binding comparison, affinity comparison , performance comparison of protein A, comparing protein A resins