Process development for cell-based influenza virus

Hans Blom, Mia Bennemo, Karolina Busson, Camilla Estmer Nilsson, Åsa Frostell Karlsson, Therese Lundström, Ann-Christin Magnusson, Peder Bergvall

GE Healthcare Bio-Sciences AB, Björkgatan 30, SE-751 84 Uppsala, Sweden

First published in June 2010
Background

- Influenza virus for vaccines is traditionally produced by infection of fertilized hen eggs.
- This is labor intensive and requires large facilities, which has led to a rapid development of large-scale mammalian cell culture methods for future virus vaccine production processes.
- Downstream processes for cell-based influenza virus require multiple steps to fulfill regulatory requirements.
Background

Figure 1. Schematic overview of an influenza virus.
Background

Cell culture
MDCK cells on Cytodex™ 3 carriers
116444000 ng DNA

Clarification
ULTA™ Prime GF 2 μm + ULTA Prime GF 0.6μm
39304000 ng DNA

Ultrafiltration/Diafiltration
Cross flow filtration, UFP-500-C
9499000 ng DNA

Non-binding AEX chromatography
Capto™ ViralQ
5000 ng DNA

Ultrafiltration/Diafiltration
Cross flow filtration, UFP-500-C
4000 ng DNA

Sterile filtration
ULTA™ Pure SG 0.2 μm
2000 ng DNA

Figure 2. Overview of the cell-based Influenza process showing typical reduction of total DNA content (purple) from an 8-L cell culture.

Imagination at work
Background

Aim

• This work describes the development of a process for removal of genomic DNA from live influenza virus cultured in Madin-Darby Canine Kidney (MDCK) cells.

• A main focus was also to use established scalable techniques that can be used in industrial production of live influenza vaccines.
Background
Virus production strategy

- Processes for vaccine production will depend largely on the chosen vaccine strategy.

- Production processes for whole, split, subunit or virus-like particle (VLP) vaccines, with the exception of live attenuated viruses, normally includes a virus inactivation step at some point in the process.
Background
Virus strains

• Four strains were tested with only minor process adjustments, including one attenuated pandemic strain and three seasonal 2007/2008 influenza strains.

<table>
<thead>
<tr>
<th>Influenza A</th>
<th>Influenza B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puerto Rico (PR8)</td>
<td>Malaysia</td>
</tr>
<tr>
<td>Solomon Islands</td>
<td></td>
</tr>
<tr>
<td>Wisconsin</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Strains tested in the process.
Background
Dose and purity considerations

- The route for vaccine administration determines the requirements for residual DNA. The recommendation by WHO for parenteral vaccines is 10 ng DNA/dose. The recommendation for protein is 100 μg/strain (300 μg/dose for a trivalent vaccine).
Results & Considerations

- The reduction of DNA for influenza strain A Solomon Islands over the Capto™ ViralQ step is 3.2 log.
- The remaining DNA from the process is roughly twice the requirement for vaccines (Table 2), while the protein content per dose is below limit.
Results & Considerations

• The total recovery of hemagglutinin (HA) generally ranges from 15% – 60% between runs and strains. Loss of measurable HA during initial micro and ultrafiltration (UF) is the main bottleneck in the process, but no loss of HA in the permeate was detected during UF.

• The retained live virus recovery was determined by TCID₅₀ to 12%. However, TCID₅₀ analysis suffers from a very high variability and recoveries can range from below 1% to over 20%.
Results & Considerations

Figure 3. Removal of DNA from live influenza virus by anion exchange chromatography using Capto™ ViralQ.
Results & Considerations

<table>
<thead>
<tr>
<th>Strain</th>
<th>HA Yield (Biacore)</th>
<th>DNA/dose(^1) (qPCR)</th>
<th>Protein/Dose(^2) (Bradford)</th>
<th>TCID(_{50})/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/Solomon Islands</td>
<td>19%</td>
<td>22.5 ng</td>
<td>52.5 (\mu)g</td>
<td>9.5</td>
</tr>
</tbody>
</table>

\(^1\)10 ng DNA/45 \(\mu\)g HA for parenterally administered vaccines.
\(^2\)100 \(ug\)/15 \(ug\)
Results & Considerations

Figure 4. Example of a SDS-PAGE comparing patterns of PR8 during different steps of the purification procedure compared to virus purified by sucrose gradient centrifugation and identification of HA protein by anti-HA Western Blot. Sample order on the gels: Rainbow™ Marker (Lane 1), Harvest (Lane 2), ULTA™ Prime GF 2 \(\mu \)m + ULTA Prime GF 0.6 \(\mu \)m Filtrate (Lane 3), UF/DF Retentate UF 10x (Lane 4), UF/DF Retentate UF 10x/DF 6x (Lane 5), Capto™ ViralQ flow-through (Lane 6), ULTA Pure SG 0.2 \(\mu \)m filtrate (Lane 7), Sucrose gradient purified influenza virus (Lane 8).
HA analysis

- Influenza vaccine potency is mainly determined by quantitation of HA using the single radial immuno diffusion (SRID) assay. This method, though approved by both FDA and EMEA, is labor intensive and suffers from low precision and sensitivity.

- The Biacore™ biosensor assay is an alternative to SRID for vaccine development and manufacturing.

Figure 5. Biacore T100 processing unit.
HA analysis

- Biacore™ quantitation of influenza HA is performed in an indirect manner as an inhibition assay.

- A comparison of Biacore and SRID is seen in Table 3.

Figure 6. Inhibition assay principle (A, B). HA is first immobilized on a dextran matrix (red-filled circles). Virus is then mixed with a fixed concentration of serum and injected over the surface. Free antibodies (not bound to virus at equilibrium) bind to the surface HA, giving a response. Low concentration of virus in the sample (A) gives high antibody binding, while high virus concentration (B) results in low binding level.
HA analysis

Biacore™ biosensor quantitation of influenza HA shows significantly higher sensitivity and precision as compared to SRID, the method mainly used today. In addition, the analysis time is shorter.

<table>
<thead>
<tr>
<th>Analytical performance</th>
<th>Biacore</th>
<th>SRID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard curve range</td>
<td>0.5-10 μg/ml</td>
<td>5-30 μg/ml</td>
</tr>
<tr>
<td>Sensitivity:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOD<sup>1</sup></td>
<td>0.3 μg/ml</td>
<td>5 μg/ml</td>
</tr>
<tr>
<td>LOQ<sup>2</sup></td>
<td>0.8 μg/ml</td>
<td>10 μg/ml</td>
</tr>
<tr>
<td>Precision</td>
<td></td>
<td></td>
</tr>
<tr>
<td>no. of samples CV < 5%</td>
<td>97%</td>
<td>18%</td>
</tr>
<tr>
<td>Time for 100 samples:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hands-on</td>
<td>1 - 2 h</td>
<td>6 – 8 h</td>
</tr>
<tr>
<td>Total</td>
<td>~15 – 16 h</td>
<td>~20 – 22 h</td>
</tr>
</tbody>
</table>

¹ LOD = limit of detection
² LOQ = limit of quantitation

Table 3. Comparison of analytical performance for Biacore assay and SRID
Conclusion

A process has been developed for the removal of genomic DNA and host cell derived impurities from cell-based influenza.

The process demonstrates:

Efficient removal of genomic DNA

Processing of live influenza virus

Biacore™ biosensor assay as an alternative to SRID
Acknowledgments

www.gelifesciences.com/bioprocess

GE, imagination at work and GE monogram are trademarks of General Electric Company.

Biacore, ÄKTAexplorer, Capto, Cytodex, ULTA and Rainbow are trademarks of GE Healthcare companies.

All third party trademarks are the property of their respective owners.

© 2010 General Electric Company—All rights reserved.

First published June 2010

All goods and services are sold subject to the terms and conditions of sale of the company within GE Healthcare which supplies them. A copy of these terms and conditions is available on request. Contact your local GE Healthcare representative for the most current information.

GE Healthcare Bio-Sciences AB, Björkgatan 30, 751 84 Uppsala, Sweden

For contact information for your local office, www.gelifesciences.com/contact